纳米金属的化学行为:重点研究纳米结构金属材料的尺度效应和界面效应所产生的新现象和新机理,研发高性能(高强度、高韧性、耐蚀和抗氧化等)金属材料。
1) 发现MgZn2的晶界面积覆盖率和晶界Mg元素的偏析程度共同控制了Al-Mg-Zn铝合金的应力腐蚀开裂行为(Corrosion Science 95(2015)6,103(2016)255,79 (2014) 1,77 (2013) 103);利用晶界驰豫机制,制备出抗晶间腐蚀和应力腐蚀的Al-Mg合金。
2)合作发现受限晶体结构铝合金(Al-Mg)具有高热稳定性、无相析出等特性(Science 373(2021)683)。
3) 发现Zn中添加Mn元素具有缓解蚀坑的酸化、促进ZnO形核及降低膜缺陷等作用,从而提升耐蚀性(Electrochimica Acta 54 (2009)6598,56 (2011) 1417, 65 (2012) 294)。
4) 推导出循环弹性应力作用下非法拉第电流与载荷因素和电化学因素之间的定量模型(Journal of The Electrochemical Society, 163(2016)C627)。
代表性论文:(*通讯作者)
[1] Y.H. Fan, B. Zhang*, H.L. Yi, G.S. Hao, Y.Y. Sun, J.Q. Wang, E.H. Han, W. Ke, The role of reversed austenite in hydrogen embrittlement fracture of S41500 martensitic stainless steel, Acta Mater. 139 (2017) 188-195.
[2] X.Y. Sun, B. Zhang*, H.Q. Lin, Y. Zhou, L. Sun, J.Q. Wang, E.H. Han, W. Ke, Correlations between stress corrosion cracking susceptibility and grain boundary microstructures for an Al–Zn–Mg alloy, Corros. Sci. 77 (2013) 103-112.
[3] W. Xu, B. Zhang, X.Y. Li*, K. Lu*, Suppressing atomic diffusion with the Schwarz crystal structure in supersaturated Al-Mg alloys, Science 373 (2021) 683-687.
[4] L. Guan, Y. Zhou, B. Zhang*, J.Q. Wang, E.H. Han, W. Ke, Influence of aging treatment on the pitting behavior associated with the dissolution of active nanoscale β-phase precipitates for an Al–Mg alloy, Corros. Sci. 103 (2016) 255-267.
[5] L. Guan, B. Zhang*, X.P. Yong, Y. Zhou, J.Q. Wang, E.H. Han, W. Ke, Quantitative understanding of the current responses under elastic cyclic loading for 304 stainless steel, J. Electrochem. Soc. 163 (2016) C627-C632.
[6] L. Guan, Y. Zhou, H.Q. Lin, B. Zhang*, J.Q. Wang, E.H. Han, W. Ke, Detection and analysis of anodic current transients associated with nanoscale β-phase precipitates on an Al–Mg microelectrode, Corros. Sci. 95 (2015) 6-10.
[7] L. Guan, B. Zhang*, X.P. Yong, J.Q. Wang, E.H. Han, W. Ke, Effects of cyclic stress on the metastable pitting characteristic for 304 stainless steel under potentiostatic polarization, Corros. Sci. 93 (2015) 80-89.
[8] X.Y. Sun, B. Zhang*, H.Q. Lin, Y. Zhou, L. Sun, J.Q. Wang, E.H. Han, W. Ke, Atom probe tomographic study of elemental segregation at grain boundaries for a peak-aged Al–Zn–Mg alloy, Corros. Sci. 79 (2014) 1-4.
[9] L. Guan, B. Zhang*, J.Q. Wang, E.H. Han, W. Ke, The reliability of electrochemical noise and current transients characterizing metastable pitting of Al–Mg–Si microelectrodes, Corros. Sci. 80 (2014) 1-6.
[10] Y.F. Jiang, W. Xu, Q. Zhang, B. Zhang*, Improvement of hydrogen embrittlement resistance by intense pulsed ion beams for a martensitic steel, Int. J. Hydrogen Energy (2021).
[11] A.I. Ikeuba, B. Zhang*, B.I. Ita, SVET and ToF-SIMS studies on the galvanic corrosion of β-phase/aluminum couple in aqueous solutions as a function of pH, J. Electrochem. Soc. 167 (2020) 021507.
[12] Y. Jiang, B. Zhang*, D. Wang, Y. Zhou, J. Wang, E.-H. Han, W. Ke, Hydrogen-assisted fracture features of a high strength ferrite-pearlite steel, J. Mater. Sci. Technol. 35 (2019) 1081-1087.
[13] A.I. Ikeuba, B. Zhang*, J. Wang, E.-H. Han, W. Ke, Understanding the galvanic corrosion of the Q-phase/Al couple using SVET and SIET, J. Mater. Sci. Technol. 35 (2019) 1444-1454.
[14] Y.H. Fan, B. Zhang*, J.Q. Wang, E.H. Han, W. Ke, Effect of grain refinement on the hydrogen embrittlement of 304 austenitic stainless steel, J. Mater. Sci. Technol. 35 (2019) 2213-2219.
[15] Y.H. Fan, F. Cui, L. Lu, B. Zhang*, A nanotwinned austenite stainless steel with high hydrogen embrittlement resistance, J. Alloys Compd. 788 (2019) 1066-1075.
[16] Y.F. Jiang, B. Zhang*, Y. Zhou, J.Q. Wang, E.H. Han, W. Ke, Atom probe tomographic observation of hydrogen trapping at carbides/ferrite interfaces for a high strength steel, J. Mater. Sci. Technol. 34 (2018) 1344-1348.
[17] A.I. Ikeuba, B. Zhang*, J. Wang, E.-H. Han, W. Ke, P.C. Okafor, SVET and SIET study of galvanic corrosion of Al/MgZn2 in aqueous solutions at different pH, J. Electrochem. Soc. 165 (2018) C180-C194.
[18] L.L. Li, B. Zhang*, B. Tian, Y. Zhou, J.Q. Wang, E.H. Han, W. Ke, SVET study of galvanic corrosion of Al/Mg2Si couple in aqueous solutions at different pH, J. Electrochem. Soc. 164 (2017) C240-C249.
[19] X.-L. Shang, B. Zhang*, E.-H. Han, W. Ke, The effect of 0.4wt.% Mn addition on the localized corrosion behaviour of zinc in a long-term experiment, Electrochimica Acta 65 (2012) 294-304.
[20] X.-L. Shang, B. Zhang*, E.-H. Han, W. Ke, Effect of small addition of Mn on the passivation of Zn in 0.1M NaOH solution, Electrochimica Acta 56 (2011) 1417-1425.
[21] J. Ma, B. Zhang*, J. Wang, G. Wang, E.-H. Han, W. Ke, Anisotropic 3D growth of corrosion pits initiated at MnS inclusions for A537 steel during corrosion fatigue, Corros. Sci. 52 (2010) 2867-2877.
[22] B. Zhang, H.-B. Zhou, E.-H. Han, W. Ke*, Effects of a small addition of Mn on the corrosion behaviour of Zn in a mixed solution, Electrochimica Acta 54 (2009) 6598-6608.